Assessment of seismic loss dependence using copula.
نویسندگان
چکیده
The catastrophic nature of seismic risk is attributed to spatiotemporal correlation of seismic losses of buildings and infrastructure. For seismic risk management, such correlated seismic effects must be adequately taken into account, since they affect the probability distribution of aggregate seismic losses of spatially distributed structures significantly, and its upper tail behavior can be of particular importance. To investigate seismic loss dependence for two closely located portfolios of buildings, simulated seismic loss samples, which are obtained from a seismic risk model of spatially distributed buildings by taking spatiotemporally correlated ground motions into account, are employed. The characterization considers a loss frequency model that incorporates one dependent random component acting as a common shock to all buildings, and a copula-based loss severity model, which facilitates the separate construction of marginal loss distribution functions and nonlinear copula function with upper tail dependence. The proposed method is applied to groups of wood-frame buildings located in southwestern British Columbia. Analysis results indicate that the dependence structure of aggregate seismic losses can be adequately modeled by the right heavy tail copula or Gumbel copula, and that for the considered example, overall accuracy of the proposed method is satisfactory at probability levels of practical interest (at most 10% estimation error of fractiles of aggregate seismic loss). The developed statistical seismic loss model may be adopted in dynamic financial analysis for achieving faster evaluation with reasonable accuracy.
منابع مشابه
Modeling the Dependency Structure between Stocks of Chemical Products Return, Oil Price and Exchange Rate Growth in Iran; an Application of Vine Copula
The main objective of this study is modeling the dependency structure between the returns of oil markets, exchange rate and stocks of chemical products in Iran. For this purpose, the theory of Vine Copula functions is used to investigate the dependency structure. In addition to consider a linear relationship between financial markets in Iran, the nonlinear dependency structure of these markets ...
متن کاملRisk Management in Oil Market: A Comparison between Multivariate GARCH Models and Copula-based Models
H igh price volatility and the risk are the main features of commodity markets. One way to reduce this risk is to apply the hedging policy by future contracts. In this regard, in this paper, we will calculate the optimal hedging ratios for OPEC oil. In this study, besides the multivariate GARCH models, for the first time we use conditional copula models for modelling dependence struc...
متن کاملTail negative dependence and its applications for aggregate loss modeling
Abstract. Tail order of copulas can be used to describe the strength of dependence in the tails of a joint distribution. When the value of tail order is larger than the dimension, it may lead to tail negative dependence. First, we prove results on conditions that lead to tail negative dependence for Archimedean copulas. Using the conditions, we construct new parametric copula families that poss...
متن کاملGJR-Copula-CVaR Model for Portfolio Optimization: Evidence for Emerging Stock Markets
Abstract T his paper empirically examines the impact of dependence structure between the assets on the portfolio optimization, composed of Tehran Stock Exchange Price Index and Borsa Istanbul 100 Index. In this regard, the method of the Copula family functions is proposed as powerful and flexible tool to determine the structure of dependence. Finally, the impact of the dep...
متن کاملA Copula-based Quantile Model for Crude oil Return-Volatility Dependence Modelling: Case of Iran Heavy Oil
The main purpose of this study is to investigate the relationship between Iran’s heavy crude oil price returns and volatility dependence using the Copula-based quantile model (CQM). CQM is an efficient tool for analyzing nonlinear time series models as it has no need for initial assumptions. We use monthly data from January 1990 to December 2019. We use the Hadrick-Prescott filter to calculate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Risk analysis : an official publication of the Society for Risk Analysis
دوره 30 7 شماره
صفحات -
تاریخ انتشار 2010